Solving Unit Rate Problems

1 GETTING THE IDEA

A rate is a comparison, or ratio, of two quantities with different units. For example, a store sells 3 T-shirts for $\$ 15$. The comparison $\$ 15$ to 3 T-shirts is a rate. This rate can also be written as $\frac{\$ 15}{3 T-s h i r t s}$. When a rate compares a quantity to one unit of another quantity, the rate is a unit rate. The rate $\frac{\$ 15}{3 T \text {-shirts }}$ is not a unit rate because the rate compares the cost to more than one T-shirt. In a unit rate, the second quantity (or denominator) should be 1 unit.

A speed limit is a unit rate. For example, the speed limit of 55 miles per hour compares the distance to 1 hour. A speed of 55 miles per hour is equivalent to traveling 55 miles in each 1-hour time span. This rate can also be written as $\frac{55 \text { miles }}{1 \text { hour }}$.

Every rate can be written as a unit rate.

Example 1

A store sells 3 T-shirts for $\$ 15$. What is the cost per T-shirt?

Strategy Use a diagram to find the unit rate.

Step 1 Write the given rate as a fraction.
Because the question asks for the cost per T-shirt, the rate compares dollars to T-shirts.
$\frac{\$ 15}{3 T-s h i r t s}$
Step 2 Draw a diagram to represent the rate.
There are 15 dollars, so divide the top rectangle into 15 equal parts. There are 3 T-shirts, so divide the bottom rectangle into 3 equal parts.

dollars													

Step 3 Use the diagram to find the unit rate.
The unit rate is the rate that compares the cost to one T-shirt.

There are five dollars for one T-shirt. So, the unit rate is $\frac{\$ 5}{1 T \text {-shirt' }}$ or $\$ 5$ per T-shirt.

Solution The cost per T-shirt is $\$ 5$.

Example 2

Changying bikes 36 miles in 3 hours. How many miles per hour does she travel?

Strategy Use an equation.

Step 1 Write a rate that compares distance to time.

$$
\frac{\text { Distance }}{\text { time }}=\frac{36 \text { miles }}{3 \text { hours }}
$$

Step 2 Write an equation.
The unit rate is the number of miles per 1 hour. The given rate and the unit rate are equivalent.
$\frac{36 \text { miles }}{3 \text { hours }}=\frac{? \text { miles }}{1 \text { hour }}$
Step 3 Use division to find the missing number.
Because 3 hours $\div 3=1$ hour, write an equivalent rate by dividing 36 miles by 3 :
$\frac{36 \text { miles } \div \mathbf{3}}{3 \text { hours } \div \mathbf{3}}=\frac{12 \text { miles }}{7 \text { hour }}$
Solution Changying travels $\frac{12 \text { miles }}{1 \text { hour }}$, or 12 miles per hour.

Note that in both Example 1 and Example 2, the unit rate can be found by dividing the numerator by the denominator and simplifying the fraction. The unit rate for $\frac{\$ 15}{3 T \text {-shirts }}$ is $15 \div 3=5$ dollars. The unit rate for $\frac{36 \text { miles }}{3 \text { hours }} 36 \div 3=12$ miles per hour. This is because the quotient can be written as a fraction over a denominator of 1 .

To find a unit rate, write the ratio as a fraction and divide the numerator by the denominator.

Example 3

Ramon drives at a rate of 60 miles per hour. He stops for lunch after driving for $\frac{1}{2}$ hour. How many miles did Ramon drive in $\frac{1}{2}$ hour?

Strategy Use a diagram to find the distance.

Step 1 Draw a diagram to show the given unit rate.
The given unit rate is $\frac{60 \text { miles }}{1 \text { hour }}$.

Step 2 Label the known and unknown quantities on the diagram.
Ramon drove for $\frac{1}{2}$ hour. Show $\frac{1}{2}$ on the number line for hours.

Step 3 Use the diagram to find the unknown quantity.
The tick mark divides 60 into two equal parts.
Since $60 \div 2=30$, each part must represent 30 .

Solution $\ln \frac{1}{2}$ hour, Ramon traveled 30 miles.

Example 4

Eva pays a company $\$ 30$ every 6 months to host her Web site.
(a) How much does Eva pay per month?
(b) How much does Eva pay for 9 months?

Strategy Use equations to find the equivalent rates.

Step $1 \quad$ Write the given rate.

$$
\frac{\text { Cost }}{\text { Time }}=\frac{\$ 30}{6 \text { months }}
$$

Step 2 Use division to find the cost per month.
Divide 30 by 6 to simplify the fraction and find the unit rate.
$\frac{30}{6}=30 \div 6=5$
This is equal to $\frac{5}{7}$, or $\frac{\$ 5}{1 \text { month }}$.
The unit rate is $\$ 5$ per month.
Step 3 Write an equation that can be used to answer part b.
Part b asks for the cost for 9 months. Use the unit rate to write an equation.
$\frac{\$ 5}{1 \text { month }}=\frac{?}{9 \text { months }}$
Step 4 Use multiplication to find the missing number.
Because 1 month $\times 9=9$ months, write an equivalent rate by multiplying the numerator and denominator by 9 :

$$
\frac{\$ 5 \times 9}{1 \text { month } \times 9}=\frac{\$ 45}{9 \text { months }}
$$

Solution Eva pays $\$ 5$ per month and $\$ 45$ for 9 months.

COACHED EXAMPLE

A water pump can pump 250 gallons from a pool in 5 minutes.
(a) What is the unit rate of the pump in gallons per minute?
(b) How long will it take to pump 450 gallons from the pool?
(a) The unit rate compares \qquad to \qquad .

The given rate is \qquad gallons in \qquad minutes.

Write the given rate as a fraction.

Divide the numerator by the denominator to find the unit rate.
\qquad \div \qquad $=$ \qquad
The unit rate is \qquad
(b) Use the \qquad rate to write an equation to solve the problem.

$$
\frac{\square \text { gallons }}{1 \text { minute }}=\frac{450 \text { gallons }}{? \text { minutes }}
$$

Multiply the numerator and denominator by \qquad to find the equivalent fraction.

It takes \qquad minutes to pump 450 gallons from the pool.

The unit rate of the pump is \qquad gallons per minute. It takes \qquad minutes to pump 450 gallons of water from the pool.

LESSON PRACTICE

1 Four muffins cost $\$ 12$. Complete the model to find the cost per muffin.

dollars	
muffins	
	\square

The cost per muffin is \qquad _.
(2) Select a rate that is a unit rate. Circle all that apply.
A. $\frac{36 \text { cookies }}{3 \text { batches }}$
B. 60 gallons every 4 hours
C. $\$ 40$ per ticket
D. $\frac{10 \text { miles }}{10 \text { hours }}$
E. $\frac{1}{2}$ cup per serving
F. 15 people for every row
G. $\frac{12 \text { roses }}{1 \text { vase }}$

3 Draw a line from the rate to its unit rate.
A. $\frac{225 \text { feet }}{5 \text { minutes }}$

- 18 feet per minute
B. $\frac{450 \text { feet }}{9 \text { minutes }}$
- 30 feet per minute
C. $\frac{36 \text { feet }}{2 \text { minutes }}$
- 45 feet per minute
D. $\frac{210 \text { feet }}{7 \text { minutes }}$
- 50 feet per minute

4. A line-painting truck is painting a line on the side of a roadway. The truck paints at a rate of 8 miles per hour. How many miles can be painted in $\frac{1}{4}$ hour?
\qquad miles can be painted in $\frac{1}{4}$ hour.

5 Twelve boxes of pencils cost $\$ 16$. Which equation could you use to find the cost per box?
A. $\frac{12 \text { boxes }}{\$ 16}=\frac{\square \text { boxes }}{\$ 1}$
B. $\frac{\$ 16}{12 \text { boxes }}=\frac{\$ 1}{\square \text { boxes }}$
C. $\frac{12 \text { boxes }}{\$ 16}=\frac{\$ \square}{1 \text { box }}$
D. $\frac{\$ 16}{12 \text { boxes }}=\frac{\$ \square}{1 \text { box }}$
6. Cassie drives 165 miles in 3 hours. Circle the numbers that make the rates below equivalent to the rate 165 miles in 3 hours.

$$
55
$$

Cassie drives 60 miles per hour.
65
(7) Troy's recipe for bagels makes 18 bagels per batch. Troy makes $\frac{2}{3}$ batch of bagels. How many bagels does Troy make? Complete the model to solve the problem.

Troy makes \qquad bagels.

8 Are the rates equivalent? Select True or False for each equation.
A. 35 feet for every 7 seconds $=7$ feet for every secondTrueFalse
B. $\frac{120 \text { cans }}{5 \text { cases }}=\frac{25 \text { cans }}{1 \text { case }}$TrueFalse
C. $\$ 12$ per hour $=\$ 48$ for every 4 hoursTrueFalse
D. $\frac{1 \text { teacher }}{15 \text { students }}=\frac{6 \text { teachers }}{90 \text { students }}$TrueFalse

9 Takashi ran 200 yards in 40 seconds. Ana ran 150 yards in 25 seconds.

Part A

Can you tell who runs faster without rewriting the rates? Explain why or why not.
\square

Part B

Who ran faster? Show your work.

10 Use numbers from the box to complete the table so that the rates are equivalent.

Dollars		90	180			
Hours	1	5		12	\quad	10
:---:						
15						
18						
45						
216						
360						

(11) The speed limit is 50 miles per hour. Kyle is driving to a baseball game that starts in 2 hours. Kyle is 130 miles away from the baseball field. If Kyle drives at the speed limit, will he arrive in time? Show your work.
\square

12 A new issue of Padma's favorite magazine comes out every month. If she buys the magazine at the bookstore, the cost is $\$ 5$ per month. If she subscribes, the cost is $\$ 57$ per year. Should Padma buy each issue separately or should she get a subscription? Show your work.

